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This paper presents analytical solutions for the effective viscoelastic properties of composite materials
based on a homogenization approach. The cases of spherical inclusions and cracks were recently devel-
oped. The objective of this paper is to use the same technique to deal with the case of periodic media con-
taining cuboidal inhomogeneities. The viscoelastic behavior of both the matrix and the homogeneous
equivalent medium is modeled by the Zener rheological model while inclusions are assumed to be lin-
early elastic. The viscoelastic Hill tensor required for the calculation of the effective viscoelastic tensors
is obtained explicitly in the Laplace-Carson space in terms of Fourier series. The final expressions show
that overall behavior depends on the viscoelastic properties of the matrix, the 3D dimensions of the inclu-
sions and the thickness of the matrix layer between two nearby inclusions. Applications to masonry
structures are presented to illustrate the theoretical results.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Viscoelastic behavior exhibits in many natural and artificial
materials such as concrete, masonry, rock, etc and effective vis-
coelastic properties are needed to model structures made of those
materials. In laboratories, the elastic moduli and viscosity of mate-
rials can be obtained from creep and relaxation tests. However,
such experiments usually take months or years [8]. Moreover, for
heterogeneous and anisotropic materials, numerous tests are
required to capture all the possibilities of the variation of the
microstructure and the volume fractions of the constituents. These
difficulties can be overcome by using the numerical codes (finite
element method, boundary element method, etc). However, a con-
siderable amount of computation cost is required to study the
overall behavior of anisotropic heterogeneous viscoelastic materi-
als due to the complexity of the microstructure and the non linear
stress-strain relationship.

For many decades, the micromechanical approach is proved
to be a powerful tool to determine the effective elastic or
viscoelastic properties of anisotropic heterogeneous materials
[6,7,3,24,27,9,12,5]. For elastic materials, many analytical solutions
are available for the estimation of their effective elastic moduli
from the microstructure information. For the case of viscoelastic
materials, the Laplace-Carson (LC) transform technique is usually
considered. The correspondence principle allows considering a lin-
ear viscoelastic material as an equivalent elastic one in LC space.
The analytical solutions obtained for elastic materials can be
employed to calculate the overall effective viscoelastic stiffness
tensor in LC space and the inverse LC transform is usually used
to transform these solutions to time space [14,13]. This technique
remains complex and sometime impossible due to the complexity
of the inverse LC transform.

To overcome this difficulty, Nguyen and colleagues [17,18] pro-
posed a technique that does not require the complex inverse LC
transformation. The idea is to determine the effective rheological
viscoelastic properties directly in LC space by considering the short
and long terms behaviors with adequate verification in transient
condition. This technique was successfully used for cracked mate-
rial [19,20,21], cracked heterogeneous material containing spheri-
cal inclusions [23] and porous media [22].

The objective of this paper is to apply such technique to study
periodic media containing elastic cuboidal inclusions, for example
of the case of masonry structures. The Standard Linear Solids (SLS)
model (Zener rheological model) (Fig. 1) is used for the matrix and
the equivalent homogeneous medium, and the linear elastic model
for the inclusions. The viscoelastic periodic Hill tensor, required for
the calculation of the effective viscoelastic tensors, is firstly
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Notations

r;R microscopic and macroscopic stress tensors
e;E microscopic and macroscopic strain tensors
c;C microscopic and macroscopic viscoelastic stiffness ten-

sors
A;P localization and Hill’s tensors
W;U geometric tensors
1, II second and fourth order identity tensors
k;l; k bulk and Lamé’s viscoelastic properties
f volume fraction of inclusions
b1, b2, b3 3D dimensions of inclusions
a1; a2; a3 3D dimensions of a unit periodic cell
S1 to S9 components of the geometric tensors

n1 to n3 components of the wave vector
p Laplace-Carson variable
pab components of the Hill’s tensor
⁄ superscript stands for Laplace-Carson transform values
hom index or superscript stand for homogenous values
M index stands for Maxwell’s series
1; ins indexes stand for long-term and instantaneous proper-

ties
0; i indexes stand for matrix and inclusions
v index or superscript stands for viscosity
Oð:Þ negligible value
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obtained explicitly in LC space and in the form of a Fourier series.
Next, we derive analytical expressions for the effective properties
from the parameters of the constituents, i.e. mechanical properties,
geometries and spatial arrangements. Finally, theoretical develop-
ment is validated and applied to study the viscoelastic behavior of
masonry with sensitivity analysis.

2. Homogenization theory of viscoelastic heterogeneous media

In LC space, the overall viscoelastic properties of heterogeneous
media can be obtained by establishing the relationship between
the local behavior

r�ðxÞ ¼ c�ðxÞ : e�ðxÞ ð1Þ
and the macroscopic behavior of a representative elementary

volume (REV):

R� ¼ C�
hom : E� ð2Þ

R� ¼ 1
jVj

Z
V
r�ðxÞdV ð3Þ

E� ¼ 1
jVj

Z
V
e�ðxÞdV ð4Þ

In Eqs. (1)–(4) and the remaining part of the paper, the super-
script ‘‘⁄” stands for the LC transform of the corresponding quanti-
ties, for example:

u�ðx;pÞ ¼ p
Z 1

0
uðx; tÞe�ptdt ð5Þ

In this case, r�ðxÞ, e�ðxÞ and c�ðxÞ are the local stress, strain and
stiffness tensors at a point x inside the REV in LC space. The quan-
tities R�, E� and C�

hom are respectively the average stress and strain
tensors and the effective stiffness tensor of the REV. The notation V
stands for the volume of the REV. The local and the average strain
tensors are related by the following linear equation:

e�ðxÞ ¼ A�ðxÞ : E� ð6Þ
where A�ðxÞ is the strain localization tensor at a point x. The com-
bination of equations from (1) to (6) yields the following equation
to calculate the overall stiffness tensor of the REV:
Fig. 1. The Standard Linear Solid model used for the matrix and the effective
material.
C�
hom ¼ 1

V

Z
V
C�ðxÞ : A�ðxÞdV ð7Þ

The derivation of C�
hom from (6) and (7) summarizes the strain

based procedure, equivalent to the dual stress based procedure
[4]. In Eq. (7), the local stiffness tensor C�ðxÞ is assumed to be
known and the main question is to determine the strain localiza-
tion tensor A�ðxÞ. The later must verify the following condition:

1
V

Z
V
A�ðxÞdV ¼ I ð8Þ

Taking the matrix as the reference material (the host material)
with property C�

0 and considering n inclusions as inhomogeneities
with properties C�

i (i = 1,2 . . ., n), from Eqs. (7) and (8), we can write
the effective tensor as:

C�
hom ¼ C�

0 þ
Xn
i¼1

f iðC�
i � C�

0Þ : A�
i ð9Þ

The remaining parameters f i andA�
i are respectively the volume

fraction and the average localization tensor of the inhomogeneity i.
In what follows, we shall consider the case of two phases com-

posite made of one specy of inhomogeneity (n = 1). The inhomo-
geneities (or inclusions) are elastic, or C�

1 ¼ C1 and only the
matrix material is viscoelastic. The behavior of the latter is mod-
eled by a rheological model composed of three elements (two
springs and one dash-pot) as shown in Fig. 1. It is a Maxwell series
in parallel with the second spring that defines the long term elastic
behavior of the material. In LC space, the elastic stiffness of the
equivalent elastic material is a function of the LC variable p and
the properties of the rheological elements (see also [18]. In this
case, this dependency is expressed as:

C�
0 ¼ C�1

M þ 1
p
C�1
v

� ��1

þ C1 ð10Þ

where CM is the elastic stiffness tensor corresponding to the spring
of the Maxwell series, Cv the viscosity tensor of the dash-pot and
C1 the elastic stiffness tensor of the second spring that corresponds
also to the long-term elastic behavior of the material.
3. Two phases viscoelastic periodic composite

3.1. Integral formulation of eigenstrain and approximation

We consider a special microstructure where the inclusions are
arranged periodically in space with periods a1; a2; a3 along the
three directions 1, 2 and 3. In the case of elastic materials,
Nemat-Nasser et al. [15] proposed an estimation scheme based
on integral equation approach. Due to the correspondence princi-
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ple, the same method can be applied to the viscoelastic materials.
Indeed, introducing first the periodic eigenstrain ~e� field as

C�
0 : ðe� � ~e�Þ ¼ r� ð11Þ
the following relation can be obtained

e� ¼ E� þ C0�ðC�
0 : ~e�Þ ð12Þ

In Eq. (12), the operator C0� admits the analytical form in the
Fourier space:

C0�
ijklðnÞ ¼

1
4l�

0

diknjnl þ dilnjnk þ djkninl þ djlnink
n21 þ n22 þ n23

� k�0 þ l�
0

l�
0ðk�0 þ 2l�

0Þ
ninjnknl

ðn21 þ n22 þ n23Þ
2 ð13Þ

with ni (i ¼ 1;2;3) being the components of the wave vector n:

ni ¼
2pni

ai
; ni 2 Z ð14Þ

With the help of the Fourier transform, we can write the convo-
lution product between C0� and a periodic second order tensor aðxÞ
as

C0�a ¼
X
n–0

C0�ðnÞ : aðnÞein:x ð15Þ

where aðnÞ is the Fourier transform of aðxÞ

aðnÞ ¼ 1
V

Z
V
aðxÞe�in:xdx ð16Þ

and V being the unit cell V ¼ a1 � a2 � a3:
Using the relation between stress and strain, Eq. (12) can be

recast in the form of an integral equation

C�
0 : ~e� ¼ ðC�

0 � C1Þ : ðE þ C0�ðC�
0 : ~e�ÞÞ ð17Þ

Next, we average both sides of (17) over the inclusion volume
X, notation h:iX, and estimate h~e�iX. Making approximation that
~e� equal to its average h~e�iX when evaluating the integral related

to C0�, we find that

hC0�ðC�
0 : ~e�ÞiX � hC0�viX : C�

0 : h~e�iX ¼ S
� : h~e�iX ð18Þ

Here the characteristic function vðnÞ is defined as being equal to
1 for points inside inclusion and vanished outside. To et al. [26]
showed that S� ¼ hC0�viX : C�

0 is the periodic Eshelby tensor. Dif-
ferent from the classical Eshelby problem involving one isolated
inclusion, the inclusions here are distributed periodically in space
and can interact. As a result, the final tensor S� here can be viewed
as superposition of the interior solution and many exterior solu-
tions due to the eigenstrain of the surrounding ones. This tensor
does not only depend on the shape of the inclusions but also on
the periods a1; a2; a3, or the cell’s dimensions.

Returning to our problem, we find that the tensor P� ¼ hC0�viX
plays a similar role as the classical Hill tensor whose Fourier series
expression can be written explicitly as

P� ¼
X
n–0

f�1vðnÞvð�nÞC0�ðnÞ ¼
X
n–0

pðnÞC0�ðnÞ ð19Þ

The geometric function pðnÞ ¼ f�1vðnÞvð�nÞ appeared in (19)
depends only on the form factor vðnÞ (the Fourier transform of
the characteristic function) and the volume fraction f of the inclu-
sions. From (17), one can obtain immediately h~e�iX in terms of E�

and then the localization tensor in this phase

A�
1 ¼ ½Iþ P� : ðC1 � C�

0Þ��1 ð20Þ
Finally, substituting (20) into (9) yields the expression of the
effective stiffness of the considering composite

C�
hom ¼ C�

0 þ f ½ðC1 � C�
0Þ�1 þ P���1 ð21Þ

From the first appearance, it seems that the expression (21)
resulted from the present approximation corresponds to the dilute
scheme. However, we must recall here that the tensor P� associ-
ated to the periodic structure have already accounted for the inter-
action between the inclusions.

3.2. General analysis of the overall behavior

Generally, obtaining explicit expression of C�
hom in LC space is

always possible. However, it is much more difficult to find the cor-
responding results in time space by LC inverse transform. To over-
come this difficulty, we approximate the overall behavior by the
SLS model and derive the rheological parameters by studying the
long term and short term behaviors of the equivalent materials.
Without assuming any particular inclusion shapes, we shall ana-
lyze first all the quantities involved in (21) and their impacts on
C�

hom. The series expansion of C�
0 in the vicinity of p ¼ 0 reads:

C�
0 ¼ C1 þ pCv þOðp2Þ ð22Þ
Analogously, the Hill tensor can be approximated by:

P� ¼ P1 þ pPv þOðp2Þ ð23Þ
where P1 corresponds to the long term Hill tensor. The combina-
tion of Eqs. (22), (23) and (20) also leads to the following formula
for the localization tensor when p ! 0:

A� ¼ A1 þ pAv þOðp2Þ ð24Þ
where

A1 ¼ ðIþ P1 : ðC1 � C1ÞÞ�1 ð25Þ
and

Av ¼ �ðPv : ðC1 � C1Þ � P1 : CvÞ : ðA1 : A1Þ ð26Þ
Based on Eqs. (22), (24) and (21), the overall tensor C�

hom can be
written as:

C�
hom ¼ C1hom þ pCvhom þOðp2Þ ð27Þ

where

C1hom ¼ C1 þ f ðC1 � C1Þ : A1 ð28Þ
and

Cvhom ¼ Cv þ f ððC1 � C1Þ : Av � Cv : A1Þ ð29Þ
Regarding the short term behavior (p ! 1), the tensor C�

0 can
be approximated by the expression

C�
0 ¼ Cins þO 1

p

� �
ð30Þ

with the instantaneous stiffness tensor being defined by:

Cins ¼ CM þ C1 ð31Þ
Next, the asymptotic response at p ! 1 of the Hill tensor P�

can be calculated with the formula

P� ¼ Pins þO 1
p

� �
ð32Þ

where Pins is the instantaneous Hill tensor. Finally, using the
approximation (30) and (32), the localization tensor A� and then
the homogenized stiffness tensor C�

hom can be approximated by:
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A� ¼ Ains þO 1
p

� �
ð33Þ

C�
hom ¼ Chom

ins þO 1
p

� �
ð34Þ

Here, we introduce the instantaneous localization tensor as:

Ains ¼ ðIþ Pins : ðC1 � CinsÞÞ�1 ð35Þ
and the instantaneous homogenized stiffness tensor as:

Chom
ins ¼ Cins þ f ðC1 � CinsÞ : Ains ð36Þ

Finally, the homogenized stiffness tensor CMhom is given by the
expression:

CMhom ¼ Chom
ins � C1hom ð37Þ

Eqs. (27) and (34) allow estimating the effective viscoelastic
behavior of the mixture by the same SLS rheological model as
the matrix

C�
hom ¼ C�1

Mhom þ 1
p
C�1
vhom

� ��1

þ C1hom ð38Þ

where the effective viscoelastic tensors CMhom, Cvhom and C1hom are
determined by Eqs. (37), (29) and (28), respectively. They are func-
tions of the elastic properties and the volume fraction of the inclu-
sions (C1 and f ) as well as the viscoelastic properties of the matrix
(CM , Cv and C1). The Hill tensors Pins, Pv and P1 required for the
calculations will be derived in Section 3 for the case of periodic
composite with cuboidal inclusions.

3.3. Case of cuboidal inclusion

For cuboidal inclusion of dimensions X ¼ b1 � b2 � b3, the geo-
metric function pðnÞ becomes

pðnÞ ¼ f
Y3
i¼1

sin nibi
2

� �
nibi
2

� �
2
4

3
5

2

ð39Þ

We can recast the Hill tensor in the following form

P� ¼ p�
wWþ p�

uU ð40Þ
where W and U are fourth order geometric tensors. The param-

eters p�
w and p�

u are functions of the viscoelastic properties of the
matrix:

p�
w ¼ 1

2l�
0

ð41Þ

and

p�
u ¼ � k�0 þ l�

0

l�
0ðk�0 þ 2l�

0Þ
ð42Þ

The tensors W and U are two geometric tensors that are not
affected by the LC transform:

W ¼

2S1 0 0 0 0 0

0 2S2 0 0 0 0

0 0 2S3 0 0 0

0 0 0 S2 þ S3 0 0

0 0 0 0 S1 þ S3 0

0 0 0 0 0 S1 þ S2

2
66666666664

3
77777777775

ð43Þ
and

U ¼

S4 S9 S8 0 0 0

S9 S5 S7 0 0 0

S8 S7 S6 0 0 0

0 0 0 2S7 0 0

0 0 0 0 2S8 0

0 0 0 0 0 2S9

2
66666666664

3
77777777775

ð44Þ

where the geometric scalars S1 to S9 are the lattice sums given by:

Si ¼
X
n–0

pðnÞ n2i
n21 þ n22 þ n23

ð45Þ

Siþ3 ¼
X
n–0

pðnÞ n4i

ðn21 þ n22 þ n23Þ
2 ð46Þ

Siþ6 ¼
X
n–0

pðnÞ n2j n
2
k

ðn21 þ n22 þ n23Þ
2 ð47Þ

The viscoelastic tensors of the matrix can be decomposed into
spherical and deviatoric parts as:

CM ¼ 3kMJþ 2lMK ð48Þ

Cv ¼ 3kvMJþ 2lvMK ð49Þ

C1 ¼ 3k1Jþ 2l1K ð50Þ
where the springs are characterized by the bulk and the shear elas-
tic moduli denoted by kM and lM for Maxwell one and k1 and l1
for the second one. On the other hand, the dash-pot of the Maxwell
series is represented by the bulk and shear viscosities kvM and lvM .
The fourth order tensors J ¼ 1� 1=3 and K ¼ I� J are the spherical
and deviatoric parts of the unit tensor respectively, with 1 is the
second order unit tensor and I the fourth order unit tensor. Employ-
ing the asymptotic behavior analysis in the previous section, Eq.
(22) leads to the following approximation of the Lamé’s moduli:

l�
0 ¼ l1 þ plvM þOðp2Þ ð51Þ

k�0 ¼ k1 þ pkvM þOðp2Þ ð52Þ
where k1 ¼ k1 � 2

3l1 and kvM ¼ kvM � 2
3l

v
M . The introduction of Eqs.

(51) and (52) in Eqs. (41) and (42) results the following approxima-
tion of the Hill’s parameters p�

w and p�
u when p ! 0:

p�
w ¼ p1

w þ ppvw þOðp2Þ ð53Þ

p�
u ¼ p1

u þ ppvu þOðp2Þ ð54Þ
with

p1
w ¼ 1

2l1
; pvw ¼ � lvM

2l2
1

ð55Þ

and

p1
u ¼ � k1 þ l1

l1ðk1 þ 2l1Þ ; pvu ¼ kvM þ lvM
k1 þ l1

� lvM
l1

� kvM þ 2lvM
k1 þ 2l1

� �
p1
u

ð56Þ
Besides, when p ! 1, we must obtain the short term response

as follows:

p�
w ¼ pins

w þO 1
p

� �
; p�

u ¼ pins
u þO 1

p

� �
ð57Þ
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with

pins
w ¼ 1

2lins
; pins

u ¼ � kins þ lins

linsðkins þ 2linsÞ
ð58Þ

where

lins ¼ lM þ l1; kins ¼ kM þ k1 ð59Þ
Based on the set of Eqs. (51), (52), (57) and (58), we find the

relations:

Pins ¼ pins
w Wþ pins

u U ð60Þ

Pv ¼ pvwWþ pvuU ð61Þ

P1 ¼ p1
wWþ p1

u U ð62Þ
The introduction of Eqs. (60)–(62) in Eqs. (25), (26) and (35)

allows calculating the localization tensors that can be then used
in Eqs. (28), (29), (36) and (37) to obtain the effective viscoelastic
properties of the mixture.

One the effective viscoelastic tensor of the mixture is calculated,
the effective stress and strain tensors can be related by following
equations (see also Fig. 1):

R ¼ R1 þ R2 ð63Þ

R2 ¼ C1hom : E ð64Þ

SMhom : _R1 þ Svhom : R1 ¼ _E ð65Þ
The combination of Eqs. (63)–(65) yields the differential

equation

Svhom : Rþ SMhom : _R ¼ Svhom : C1hom : E þ ½Iþ SMhom : C1hom� : _E
ð66Þ

that can be used to solve the effective stress and strain fields.

3.4. Validation of the solution in LC space by finite element method

As effective stiffness tensors in LC space given by Eqs. (21) and
(40)–(47) are derived with assumption of homogeneous eigen-
strain in inclusions, it is important to validate such assumption.
To this end, we consider the equivalent elastic problem of a com-
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Fig. 2. Effective shear modulus in LC space: comparison of the
posite containing a homogeneous elastic matrix and cuboidal elas-
tic inclusions. The exact results of the effective elastic properties of
such material can be obtained by finite element method (FEM)
[16,10,11,25]. For this particular case of periodic medium, to min-
imize the computational time, finite element calculations can be
realized on a unit cell embedding a single cuboidal inclusion with
appropriate prescribed periodic boundary conditions [1,2]. It is
worth noting that the convergence of the numerical simulation
with respect to the element size must be carefully checked to cap-
ture the exact response of the composite material. One the numer-
ical results are converged, it can be used as reference to validate
the analytical approach. Fig. 2 show a good coherent between the
analytical solution and the results obtained by FEM for the shear
moduli in three directions.

4. Numerical results and sensitivity analysis

4.1. An application of masonry

To illustrate the analytical solutions derived in previous sec-
tions for effective viscoelastic properties of periodic media contain-
ing cuboidal inclusions, we consider a stack-bond masonry wall
made of viscoelastic mortar matrix and elastic cuboidal brick inclu-
sions. The materials properties of the materials are given in Table 1.
The dimensions of the inclusions are 200� 50� 100 (mm3). Fig. 3–
5 show the effective viscoelastic properties of the mixture as func-
tions of the volume fraction of bricks. There are three effective vis-
coelastic stiffness tensors due to the chosen Zener’s viscoelastic
rheological model for the behavior of the material. Each tensor
has nine independent viscoelastic parameters due to the orthotro-
pic anisotropy of the mixture that is result of the cuboidal shape of
brick. Figs. 3 and 4 show the long-term effective elastic stiffnesses
and that of the Maxwell’s series, respectively. Fig. 5 presents the
effective viscosities of the Maxwell’s series. The terms Ckkkk with
k ¼ 1 to 3 coincide when the volume fraction of inclusions tends
to 0 or 1 due to the isotropy of the matrix and inclusions. However
they are very different at about 60–80% inclusion volume fraction.
Similar trends are obtained for the terms Cijij and Ciijj. It is interest-
ing to observe that all the elastic stiffnesses and the viscosities of
the Maxwell’s series tend to zero when the volume fraction of brick
tends to 1. It is evident since the elastic behavior assumed for brick
0.8 1 
s 
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mu23, Analy�cal 
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developed model and the numerical simulation using FEM.



Table 1
Viscoelastic properties of matrix and inclusion used for the simulations [23].

Parameters Values Units

kM 2.404 GPa
lM 1.655 GPa
kvM 23.639 GPa�h
lvM 21.375 GPa�h
k1 1.257 GPa
l1 0.866 GPa
ki 6.111 GPa
li 4.583 GPa
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inclusion. More precisely, the viscous behavior of masonry origi-
nated by that of the mortar matrix vanishes when the volume frac-
tion of mortar tends to zero.

4.2. Comparison with the inverse LC method

The relaxation function in time space can be obtained by the
inverse LC transformation of the effective stiffness tensor in LC
space obtained by Eqs. (21) and (40)–(47). The effective shear com-
ponent in the directions 1 and 2 that can be written as:

C�
hom;1212 ¼ l�

0 þ
f

1
l1�l�

0
þ 1

l�
0
S1 þ S2 � 4 k�0þl�

0
k�0þ2l�

0
S9

h i ð67Þ
0 
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lM
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2
3
l�

0 ð68Þ

k�0 ¼ 1
kM

þ 1
pkv

� ��1

þ k1 ð69Þ

Mathematical platform such as Maple or Matlab can be
employed to realize the inverse LC transformation but the analyt-
ical results obtained is extremely cumbersome and cannot be pre-
sented in this paper. Consider for example inclusions of
dimensions 200� 50� 100 (mm3) and joint thickness of 5 (mm)
that correspond to a volume fraction f ¼ 0:845. The correspondent
geometric factors are: S1 ¼ 0:019, S2 ¼ 0:092, S9 ¼ 0:00024. Using
also the viscoelastic parameters given in Table 1, we obtain the
shear relaxation modulus in time space that is presented by the
points on Fig. 6.

Now we return to the approximated method, we recall that the
stress and strain relationship can be expressed by the simple and
elegant differential Eq. (66) in time space. The relaxation modulus
can be obtained using such equation without using the inverse LC
transform. To do so, we consider a simple example where the con-
stant macroscopic strain has the form E ¼ E0e1 � e2, Eq. (66)
becomes:
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R12 þ Cvhom;1212

CMhom;1212

_R12 ¼ 2C1hom;1212E0 ð70Þ

The solution of Eq. (70) that satisfies the initial condition is the
following

R12 ¼ 2C1hom;1212E0 þ 2CMhom;1212E0exp �CMhom;1212

Cvhom;1212
t

� �
ð71Þ

Then the shear relaxation modulus admits the form

Rhom;1212 ¼ R12

E0
¼ C1hom;1212 þ CMhom;1212exp � t

shom;1212

� �
ð72Þ

where the relaxation time term shom;1212 is calculated with the
expression

shom;1212 ¼ Cvhom;1212

CMhom;1212
ð73Þ

The latter corresponds to the effective shear characteristic time
in directions 1 and 2. Fig. 6 shows a perfect validation of the pro-
posed approach against the classical inverse LC method. Error
between two methods is less than 0.3 (%).

It is also important to remark that, as the approximated method
provides effective rheological viscoelastic properties, it can be
easily implemented in a multi-scale homogenization scheme (as
done by Nguyen et al. [23]), the self-consistent scheme or DEM
model. Such techniques required n-steps homogenization proce-
dure that can not be solved by the direct inverse LC method.

4.3. Impact of inclusion shape

To analyze the sensitivity of the effective viscoelastic properties
of the mixture to the inclusion shape, we vary the first and second
dimension of inclusions and fix its volume and third dimension, i.e.
b1b2b3 ¼ constant and b3 ¼ constant. Three brick types are consid-
ered namely 100� 100� 100 (cm3); 200� 50� 100 (cm3); 400�
25� 100 (cm3). Figs. 7 and 8 show a strong impact of the inclusion
shape on the overall viscoelastic properties of the mixture, espe-
cially at middle range of volume fraction of inclusions. A lower
value of viscosity and a higher value of long-term stiffness are
obtained for a higher value of b1. Such dependence can be
explained by the assumption of elastic inclusions. More precisely,
a high value of b1 reduce the viscosity effect in direction 1 of the
mortar matrix on the overall behavior of the masonry.

4.4. Comparison between cubic and spherical inclusions

Now we focus on the case of cubic inclusion, i.e. b1 ¼ b2 ¼ b3,
the number of independent parameters of each viscoelastic tensor
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reduces to three: C1111 ¼ C2222 ¼ C3333, C1122 ¼ C1133 ¼ C2233,
C1212 ¼ C1313 ¼ C2323. The long-term bulk modulus is calculated by:

k1hom ¼ C1111;1hom þ 2C1122;1hom

3
ð74Þ

and the two independent shear moduli are given by:

l1hom ¼ C1212;1hom ð75Þ
l0
1hom ¼ C1111;1hom � C1122;1hom

2
ð76Þ

Next, we define an average shear modulus as:

laverage
1hom ¼ 2l1hom þ l0

1hom

3
ð77Þ

The dimensions of cubical inclusion are 100� 100� 100 (cm3).
Fig. 9 shows the long-term bulk modulus and average shear
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modulus versus the volume fraction of the inclusions. These results
are compared with the long-term bulk and shear moduli obtained
for the case of spherical inclusions [23]. The long-term bulk modu-
lus are identical for the cases of cubic and spherical inclusionswhile
the average shear modulus of the case of cubic inclusions is almost
identical to the shear modulus obtained for spherical inclusions.

Similarly, Figs. 10 and 11 present the comparison of the proper-
ties of the Maxwell’s series between the cases of cubic inclusions
and spherical inclusions. The effective elastic bulk and shear mod-
uli and the bulk viscosity are also identical between the two cases
of inclusion shape while the average shear viscosity obtained for
the case of cubic inclusions is slightly smaller than the shear vis-
cosity of medium containing spherical inclusions.

5. Conclusions

We derived analytical solutions for effective viscoelastic prop-
erties of periodic media containing cuboidal inclusions. The appar-
ent effective stiffness tensor of a mixture of multi components is
firstly derived in LC space considering the relationship between
microscopic and macroscopic responses of the material. The geo-
metric tensors and the apparent viscoelastic Hill tensors are
obtained in the form of the Fourier series. The geometric tensors
are functions of nine independent parameters that are in turn func-
tions the dimensions of the inclusions and the unit periodic cell.
The case of a mixture of a SLS viscoelastic matrix and elastic inclu-
sions is then considered. The analytical solution in LC space is very
well validated against numerical simulation using FEM on an
equivalent elastic problem.

An application for masonry and a sensitivity analysis are given
to illustrate the theoretical results. All the elastic stiffnesses and
the viscosities of the Maxwell’s series tend to zero when the vol-
ume fraction of brick tends to 1 due to the assumed elastic behav-
ior of brick inclusions. Direct inverse LC transformation is also
realized to validate the proposed approach. The sensitivity analysis
shows also that the elastic behavior of the inclusions results also in
a lower value of viscosity and a higher value of long-term stiffness
in direction 1 for a higher value of b1.

Finally, a comparison with the solutions obtained for the partic-
ular case of spherical inclusions is considered. For the case of cubic
inclusions, the bulk elastic moduli and the bulk viscosity are iden-
tical to that obtained for the cases of spherical inclusions. Besides,
the average shear moduli and shear viscosities of the case of cubic
inclusions are almost identical or very close to that obtained for
spherical inclusions.
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